Introduction to R

Mauricio Romero
(Based on Nick C. Huntington-Klein's notes)

Getting familiar with R

R is a language for working with data

RStudio is an environment for working with that language

Excel/Sheets is a great tool for accountants, not for working with data

e Learning to program is a highly valuable skill (regardless of what you want to do)

Programming: a language to communicate with the computer

Programming requires you to be very precise: Computer will do exactly as told

Introduction to R

RStudio — The Basics

Objects and Functions

Introduction to R

RStudio — The Basics

RStudio Panes

Console

Environment Pane

Browser Pane

Source Editor

RStudio Panes

RStudio

File Edit Code View Plots

Session Build Debug Profile Tools
RPNy g

D untitear

Help
B - Addns -
Environment | History _ Connections
M % Wsuceonswe O - W & B mportDataset - &
1| 8 Global Enronment -

Source editor

nviroment

Fles Pos Padages Help Viewer
R version 4.0.0 (2020-04-24)

“Arbor Da
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type ‘license()' or 'licence()’ for distribution details.
Natural language support but running in an English locale

Browser

R is a collaborative project with many contributors.

Type ‘contributors()’ for more information an

‘citation()* on how to cite R or R packages in publications.
Type "demo()’ for some demos, *help()' for on-line help, or
*help.start()' for an HTML browser interface to help.

Type 'q()" to quit R.

Console

e Typically bottom-left
e You can type in code and have it run immediately

o |t will also show any output or errors

Let’s copy/paste some code in there to run

#Generate 500 heads and tails

data <- sample(c("Heads","Tails"),500,replace=TRUE)
#Calculate the proportion of heads

mean (data=="Heads")

#This line should give an error - it didn’t work!
data <- sample(c("Heads","Tails"),500,replace=BLUE)
#This line should give a warning

#It did SOMETHING but maybe not what you want

mean (data)

#This line won’t give an error or a warning

#But it’s not what we want!

mean (data=="heads")

Console

See the code that we've run

See the output of that code, if any

See any errors or warnings (in red)

Errors mean it didn't work

Warnings mean it maybe didn't work.

Just because there is no error or warning does not mean it did work! Always check

RStudio Panes

> #Generate 500 heads and tails

> data <- sample(c("Heads","Tails"),5@0,replace=TRUE)
> #Calculate the proportion of heads

> mean(data=="Heads")

[1] ©.48

> #This line should give an error - it didn't work!

> data <- sample(c("Heads","Tails"),500,replace=BLUE)

>17€ , cpliace, proo,;

> #This line should give a warning

> #It did SOMETHING but maybe not what you want
> mean(data)

[1] NA
#This line won't give an error or a warning
#But it's not what we want!
mean{data=="heads")

1] @

Environment pane

e Typically is on the top-right
e Two important tabs: Environment and History

e History: Log of what we have done

e Can re-run commands by double-clicking them or hitting Enter
e Send to console with double-click/enter

e Send to source pane with Shift+double-click/Enter

e Or use "To Console” or "To Source” buttons

e Environment: Objects we have created

All the objects we have in memory

For example, we created the “data” object, so we can see that in Environment

It shows us lots of useful information about that object too (e.g., size)
e You can erase everything with the little broom (equivalent to “rm(list=lIs())")

11

Browser Pane

e Typically bottom-right

e Mostly, outcome of what you do will be seen here

12

Browser Pane: Files Tab

e Files Tab

e Basic file browser
e Handy for opening up files
e Can also help you set the working directory (same as “setwd(file_path)”)

Go to folder

In menu bar, Session

e Set Working Directory

To Files Pane Location

13

Browser Pane: Plots and Viewer tabs

e When you create something that must be viewed, like a plot, it will show up here
e For example:

data(LifeCycleSavings)
plot (density(LifeCycleSavings$pop75),

main=’Percent of Population over 757)

e For example (using ggplot):

data(LifeCycleSavings)

library (ggplot2)
ggplot(LifeCycleSavings ,aes (x=pop75))+
stat_density(geom=’1line’)+

ggtitle (’Percent of Population over 75°)

e “Export” button here - save plots you've created (better to do this via code)

14

Density

0.05 0.10 0.15 0.20 0.25 0.30

0.00

Percent of Population over 75

N =50 Bandwidth = 0.5312

15

Browser Pane: Packages Tab

Install new packages and load them in

We'll be talking more about packages later

o | generally avoid this tab; better to do this via code

e Why? Replicability!

e A VERY important reason to use code and not the GUI or Excel

e Make sure your future self (or someone else) knows how to use your code
e "“Update” button (check for package updates)

16

Browser Pane: Help Tab

e This is where help files appear when you ask for them
e You can use the search bar , or "help()" in the console

e More on this later

17

Source Pane

e Top left
¢ You should be working with code FROM THIS PANE, not the console!
e Why? Replicability!

e Also, COMMENTS! USE THEM! PLEASE! “#" lets you write a comment
e Switch between tabs like a internet browser

18

Running Code from the Source Panel

e Select a chunk of code and hit the “Run" button (ctrl+enter)

e Going one line at a time lets you check for errors more easily

19

Running Code from the Source Panel

data(mtcars)
mean (mtcars$mpg)
mean (mtcars$wt)
372+565

log (exp (1))

279

(1+1)°9

20

> data(mtcars)

> mean(mtcars$mpg)
[1] 20.09062

> mean(mtcars$wt)
[1] 3.21725

> 372+565

[1] 937

> Tog(exp(1))
[1] 1

> 2A9

[1] 512

> (1+1)A9

[1] 512

3

21

Autocomplete

e RStudio comes with autocomplete!
e Typing in the Source Pane or the Console, it will try to fill in things for you

e Command names (shows the syntax of the function too!)
e Object names from your environment

e Variable names in your data
e Try redoing the code we just did, typing it out

22

e Autocomplete is one way that RStudio tries to help you out

e The way that R helps you out the most is with the documentation
e When you start doing serious programming, the most important skills are:

e Knowing to read documentation

e Knowing to search the internet for help

23

e You can get the documentation on most R objects using the “help()" function
e ‘“help(mean)”, for example, will show you:

e What the function is

The syntax for the function (i.e., what it takes and what it spits out)

The available options for the function

Otbher, related functions, like “weighted.mean”

Ideally, some examples of proper use

e Not just for functions/commands - some data sets too! Try “help(mtcars)”

24

Searching the Internet

Professional programmers spend a lot of time looking up how to do stuff online

Just Google (or whatever) what you need! There will usually be a resource

R-bloggers, Quick-R, StackOverflow

Or just Google. Try including “R"” and the name of what you want in the search

e If “R" isn't turning up anything, try “Rstats” or “R Project”

Ask on Twitter with ‘#rstats’

Ask on StackExchange or StackOverflow

23

Searching the Internet

We've used data sets LifeCycleSavings and mtcars with the data() function

What data sets can we get this way?

Let's try “help(data)”

Let's try searching the internet

26

Introduction to R

RStudio — The Basics

Objects and Functions

27

Introduction to R

Objects and Functions

28

R is an object oriented programming language

e What can you do in R?

e Create objects
e Look at objects

e Manipulate objects
e That's it. That's all. That's what R does.

29

Creating a Basic Object

e Let's create an object. Do this with the assignment operator “<-" (a.k.a., “gets")

a <- 4

e Creates an object called ‘a’

e What is that object? It's a number
e Specifically, it's the number 4

e We know that because we took that 4 and we shoved it into ‘a’

e Why store it as an object? To look at it and manipulate it

e We can do more complex calculations before storing it, too.

b <- sqrt(16)+10

30

Looking at Objects

e We can see this object that we've created in the Environment pane

e Putting that object on a line by itself in R will show us what it is

31

4

(@]
—
+
~
O
—
v
]
[
G
7]
|
A"
0
A

> a <-

> a

[1] 4

> b

[1] 14
I

>

32

Looking at Objects

e We can create an object and look at it in the console without storing it

3
a+b

e We can run objects through functions to look at them in different ways

#What does a look like if we take the square root of it?
sqrt (a)

#What does it look like if we add 1 to it?

a + 1

#If we look at it, do we see a number?

is.numeric (a)

83

> 3

[11 3

> atb

[1] 18

> #what does a Took Tike if we take the square root of it?
> sqrt(a)

[1] 2

> #what does it look like if we add 1 to it?
>a+ 1

[1] 5

> #If we look at it, do we see a number?

> is.numeric(a)

[1] TRUE

> |

34

Manipulating Objects

#Looked like with 1 added, but a wasn’t changed
a

#let’s save a+l as something else

b <- a + 1

#And let’s overwrite a with its square root

a <- sqrt(a)

a

b

85

> #Looked like with 1 added, but a wasn't changed
> a

[1] 4

> #Let's save a+l as something else

>b<-a+1

> #And let's overwrite a with its square root

> a <- sqrt(a)
> a

[1] 2

> b

[1] 5

> |

36

e Even though we changed ‘a‘, ‘b* was already set using the old value of ‘a’,

e So was still ‘4+1=5", not ‘2+1=3"
e ‘a‘ basically got reassigned with ‘<='. That's how we got it to be 2

e Everything in R is just manipulating objects but with more complex objects and
more complex functions!

37

Types of Objects

e We already determined that ‘a‘ was a number

e What else could it be? What other kinds of variables are there?

e Some basic object types:

e Numeric: A single number

e Character: A string of letters, like ‘"hello’

Logical: “TRUE" or ‘FALSE' (or ‘T* or ‘F')

Factor: A category, like 'left handed’, 'right handed’, or "ambidextrous’

e Vector: A collection of objects of the same type

38

e A character object is a piece of text, held in quotes like " " or ™" "’

e For example, maybe you have some data on people’s addresses

address <- "321 Fake St."
address

is.character (address)

39

> address <- "321 Fake st."
> address

[1] "321 Fake st."

> is.character(address)
[1] TRUE
> |

40

Logicals are binary: TRUE or FALSE. Lots of data is binary

c <- TRUE
is.logical(c)
is.character (a)

is.logical(is.numeric(a))

Logicals are used a lot in programming too to evaluate whether a conditions hold

a > 100

a > 100 | b == 5

‘&' is AND

‘I"is OR

To check equality use ‘==', not ‘="

‘>="is greater than OR equal to, similarly for ‘<=’

41

> C <- TRUE

> is.logical(c)

[1] TRUE

> is.character(a)

[1] FALSE

> is.logical(is.numeric(a))

[1] TRUE

> a > 100

[1] FALSE

>a> 100 | b ==
[1] TRUE

> |

42

e They are also equivalent to ‘TRUE=1"' and ‘FALSE=0‘ which comes in handy

e We can use ‘as' functions to change object type (although for ‘T=1, F=0" it does
it automatically)

as.numeric (FALSE)
TRUE + 3

43

> as.numeric(FALSE)
[1] O
> TRUE + 3

[1] 4

> |

a4

Let’s think about what these lines might do

is.logical (is.numeric (FALSE))
is.numeric(2) + is.character(’hello’)
is.numeric(2) & is.character (3)

TRUE | FALSE

TRUE & FALSE

45

> is.logical (is.numeric(FALSE))
[1] TRUE

> is.numeric(2) + is.character('hello")
[1] 2
> is.numeric(2) & is.character(3)

[1] FALSE
> TRUE | FALSE
[1] TRUE
> TRUE & FALSE
[1] FALSE

46

Factors

e Factors are categorical variables (i.e., mutually exclusive groups)

e They look like strings, but they're more like logicals with more than two levels

e Factors have levels showing the possible categories you can be in

e <- as.factor(’left-handed’)
levels(e) <- c(’left-handed’,’right-handed’,’ambidextrous’)

e

47

> e <- as.factor('left-handed")
> levels(e) <- c('left-handed’ ight-handed', 'ambidextrous"')
> ee <- as.factor('left-handed')
>
>

levels(e) <- c('left-handed', 'right-handed’, 'ambidextrous")
e

[1] left-handed

Levels: left-handed right-handed ambidextrous

-1

48

IIlHHHHHII

e Data is basically a bunch of variables all put together
e A lot of R works with vectors, which are a bunch of objects all put together!
e Use ‘c()' (concatenate) to put objects of the same type together in a vector
e Use square brackets to pick out parts of the vector

d <- ¢(5,6,7,8)

c(is.numeric(d),is.vector(d))
d[2]

49

>d <- c(5,6,7,8)
> c(is.numeric(d),is.vector(d))

[1] TRUE TRUE
> d[2]
[1] 6

> |

50

e Statistics helps us make sense of lots of different measurements of the same thing

e Thus, lots of statistical functions look at multiple objects

mean (d)
c(sum(d),sd(d),prod(d))

51

> mean(d)
[1] 6.5

> c(sum(d),sd(d),prod(d))

[1] 26.000000 1.290994 1680.000000
> |

52

e We can perform the same operation on all parts of the vector at once!

d + 1
d + d
d > 6

53

d
]
d
1] 10 12 14 16

>
[
>

[
>d > 6

L
>
Y
-
L
-
o
-
L
wn
-
<
L
L
V)]
-l
<
L
—
—
—

54

Vectors

e Factors make a lot more sense as a vector

continents <- as.factor(c(’Asia’,’Asia’,’Asia’,
’N America’,’Europe’,
>Africa’,’Africa’))
table (continents)

continents [4]

55

> continents <- as.factor(c('Asia','Asia', 'Asia’,
+ 'N America', 'Europe’,
+ 'Africa', 'Africa'))

> table(continents)

continents

Africa Asia Europe N America
2 3 1 1
> continents[4]
[1] N America
Levels: Africa Asia Europe N America
>

56

Value matching

e Create logicals seeing if a value matches ANY value in a vector with ‘%in%’

3 %in% c(3,4)

c(’Nick’,’James’) %in% c(’James’,’Andy’,’Sarah’)

57

> 3 %in% c(3,4)
[1] TRUE

> c('Nick', "James") %in% c('James', "'Andy’', 'Sarah')

[1] FALSE TRUE

> |

58

Some basic vector manipulations

1:8

rep(4,3)

rep(c(’a’,’b?),4)

numeric (5)

character (6)

sample (1:20,3)

sample (c("Heads","Tails"),6,replace=TRUE)

59

> 1:8

[111 23456738

> rep(4,3)

[1] 4 4 4

> rep(c('a','b'),4)

[1] "a" "b" "a" "b"™ "a" "b"™ "a" "b"
> numeric(5)

[11 00000

> character(6)

[1] "" o neownoww

> sample(1:20,3)

[1] 2 11 3

> sample(c("Heads","Tails"),6,replace=TRUE)

uon

[1] "Heads" "Heads" "Heads" "Tails Tails

> |

Heads"

60

Vector Test

e If we do ‘f <- ¢(2,3,4,5)", then what will the output of these be?
£f°2
f + c(1,2,3,4)
c(f,6)
is.numeric (£f)
mean (f >= 4)
fxc(1,2,3)
length (f)
length(rep(1:4,3))
f/2 == | £ < 3
as.character (f)
fL1]1+£[4]
c(f,f,f,f)
fL£01]]
flc(1,3)]
f %in% (1:4%2) 61

> f <- ¢(2,3,4,5)
> fA2
[1] 4 9 16 25
> f + c(1,2,3,4)
[11 3579
> c(f,6)
[1123456
> is.numeric(f)
[1] TRUE
> mean(f >= 4)
[1] 0.5
> f*c(1,2,3)
[1] 2 612 5
warning message:
Iin f * c(1, 2, 3)
longer object Tength is not a multiple of shorter object length
> length(f)
[1] 4
> Tength(rep(1:4,3))
[1] 12
>f/2=2] f<3
[1] TRUE FALSE TRUE FALSE
> as.character(f)
[1] "2" "3" "4" "s5"
> f[1]+f[4]
[11 7
> c(f,f,f,f)
[11 2345234523452345
> ff[1]]
[1] 3
> flc(1,3)]
Ml 2 a

e Create a factor that randomly samples six “"Male' or “Female’* people.

Add up all the numbers from 18 to 763, then get the mean

What happens if you make a list with a logical, a numeric, AND a string in it?

Figure out how to use ‘paste0()’ to turn ‘c('a’,’b")" into 'ab"

Use ‘[]' to turn ‘h <- ¢(10,9,8,7)" into 'c(7,8,10,9)" and call it j'

(Several ways) Create a vector with eleven 0's, then a 5.

Use ‘floor()' or ‘%% to count how many multiples of 4 between 433 and 899

63

	RStudio – The Basics

